UUCMS. No.						

B.M.S. COLLEGE FOR WOMEN BENGALURU -560004

III SEMESTER END EXAMINATION – APRIL - 2024

M.Sc – MATHEMATICS - LINEAR ALGEBRA (CBCS Scheme – F+R)

Course Code: MM301T Duration: 3 Hours

QP Code: 13001 Max. Marks: 70

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

- 1. a) If V is a finite dimensional vector space over F, then prove that $T \in A_F(V)$ is invertible if and only if the constant term of the minimal polynomial of T is non-zero.
 - b) If V is a finite dimensional vector space over F, then prove that $T \in A_F(V)$ is regular if and only if T maps V onto itself.
 - c) Define regular and singular transformation. If V is a finite dimensional vector space over F and if $T \in A_F(V)$ is regular, then prove that T^{-1} has a polynomial expression in T over F. (5+5+4)
- 2. a) Define characteristic root of a linear transformation. Prove that the non-zero characteristic vectors belonging to distinct characteristic roots are linearly independent.
 - b) If $\lambda \in F$ is a characteristic root of $T \in A_F(V)$, then for any $q(x) \in F[x]$, prove that $q(\lambda)$ is a characteristic root of q(T).
 - c) Let V be the vector space of all polynomials of degree 3 or less over F. In V, define T by $(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1+x) + \alpha_2(1+x^2) + \alpha_3(1+x^3)$. Compute the matrix of T in the following bases
 - (i) $1, x, x^2, x^3$; let this matrix be A.
 - (ii) $1, 1 + x, 1 + x^2, 1 + x^3$; let this matrix be *B*.
 - (iii) Find C such that $B = CAC^{-1}$.

(5+4+5)

- 3. a) Prove that the double dual of V is isomorphic to V.
 - b) Define coordinate vector $[x]_B$ of x relative to a basis B. Let $B = \{v_1, v_2, \dots, v_n\}$ be a basis for the vector space V. Prove that the coordinate mapping $x \to [x]_B$ is a one to one linear transformation from V to \mathbb{R}^n .

c) Define the change of coordinates matrix from a basis *B* to *C*. Prove that $\begin{pmatrix} P \\ C \leftarrow B \end{pmatrix}^{-1} = \begin{pmatrix} P \\ B \leftarrow C \end{pmatrix}$. Illustrate it for the basis $B = \{ \begin{bmatrix} 7 \\ 5 \end{bmatrix}, \begin{bmatrix} -3 \\ -1 \end{bmatrix} \}$ and $C = \{ \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \}$. (6+4+4)

- 4. a) State and prove Cayley Hamilton theorem.
 - b) If $T \in A_F(V)$ has all its characteristics roots in *F*, then prove that there exists a basis of *V* in which the matrix of *T* is triangular.
 - c) Let $T \in A_F(V)$ and V_1 be a n_1 dimensional subspace of V spanned by $\{v, T(v), ..., T^{n_1-1}(v)\}$ where $v \neq 0$. If $u \in V_1$ is such that $T^{n_1-k}(u) = 0, 0 \le k \le n_1$, then prove that $u = T^k(u_0)$ for some $u_0 \in V_1$. (4+6+4)
- 5. a) Prove that two nilpotent transformations are similar if and only if they have the same invariants.

b) If $T \in A_F(V)$ has a minimal polynomial $p(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{r-1} x^{r-1} + x^r$ over *F*. Suppose *V* as a module is a cyclic module relative to *T*. Then prove that there exists a basis of *V* over *F* such that the matrix of *T* in this basis is of the form

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\gamma_0 & -\gamma_1 & -\gamma_2 & \cdots & -\gamma_{r-1} \end{bmatrix}$$
(7+7)

- 6. a) State and prove Bessel's inequality.
 - b) Using Gram-Schmidt process, find the orthogonal and then orthonormal basis from the basis $\begin{cases} 3 \\ 0 \\ -1 \end{cases}$, $\begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.
 - c) If A is a symmetric matrix then prove that any two eigen vectors from different eigen spaces are orthogonal. (4+5+5)
- a) Define quadratic form and explain the classification of quadratic form with examples.
 b) Find the extreme values of Q(x) = 16x₁² + 19x₂² + 4x₃² + 10x₄² subject to the constraint x^Tx = 1.

b) Find the singular value decomposition of the matrix $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$. (4+3+7)

8. a) State and prove Sylvester's law of inertia.

b) Let *V* be a finite dimensional vector space over *F* with bases $\beta = \{x_1, x_2, \dots, x_n\}$ and $\gamma = \{y_1, y_2, \dots, y_n\}$ and *Q* be the change of coordinate matrix from γ to β then prove that Ψ_{γ} and Ψ_{β} are congruent.

c) Define rank and signature. Find the rank and signature of the quadratic form $x_1^2 - 4x_1x_2 + x_2^2$. (6+5+3)
